SIMPLE-WAVE-TYPE SOLUTIONS OF THE EQUATIONS
OF TWO-DIMENSIONAL GASDYNAMICS

V. M. Men'shikov

In this paper we classify the partially invariant solutions of rank B = 1 and invariance de-
fect 6 = 1 of the system of equations of two~-dimensional gasdynamics.

1. A group classification of the equations of gasdynamics according to the function p = f(p, S), speci-

fying the equation of state, was carried out in [1]. In this paper we consider the system of differential equa-
tions of two-dimensional gasdynamics

du/dt 4 pWNJp =0 (d/ dt = 8/ 9t + uV)
do/dt4 pdivu=0, dp/dt-+ pc® divu =0 (& = af / 8p) (1.1)

Here, p is the pressure, p is the density, S is the entropy, and u = (u, v) is the velocity vector; they
are all required functions of the independent variables x, y, and t. With £ (p, S) arbitrary, the widest Lie

group of point transformations for system (1.1) is of order seven, and the basis of the corresponding Lie
algebra L, consists of the operators [1]

a d 0
N=gp, K=7. L=y
d ] 9 9 9
Xo=tg tiow. Bo=igto (2.2)
0 2. 2 2 _ 2., 2
Xe=tap +og;tv dy ! Xr=ygz—= 6y+v6u_u6v

A knowledge of the group admitted by a system of differential equations enables its invariant and
partially invariant solutions to be isolated. Our aim in this paper is to classify all the partially invariant
solutions of rank B = 1 and invariance defect § = 1. Here, 8 = 1 implies that there are four functions (in-
variants of the three-parameter subgroup) such that three of them are expressible in terms of the fourth. *
A defect & = 1 implies, in general, that the obtained solutions contain one arbitrary function. Simple waves
belong to this type of solution, so that we in fact describe as simple~wave type solutions the partially in-
variant solutions of rank B8 = 1 and invariance defect 6 = 1. In accordance with [2], such solutions must be
constructed in third-order subgroups. A system of classes of dissimilar third-order subgroups was found

in [2], which may be reduced for computational convenience to twenty different types of class, The relevant
table is given below.

TABLE 1
Operators l I ‘ Operators
1| Xy Xy Xy 11| X, Xy Xs 1+ aX;
2 Xl X2 X4 12 X2 X4 X1—|— X5
3| X X, Xg 4+ X, 13| X X X5
4 X1 .Xz X5+CZX4 14 Xz X3+X4 X1—|—X5
51 X, Xs X, 15| X4 Xs X, +aXs
6| X. X, X,laX, (|16 Xe X, Xo 4 XobaXs
7 X, X3 X+ Xy 17 Xa X5 X
8| X. X3 X1+ X5 181 Xa Xs+aXe Xe-+0aXs
9| X, X3 X, 19 X2+ X5 X, X3 — X,
10 .Xg X3 X5+(1X4 20 X2—|—X5 X3 X4—|—O£X2
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The algorithm described in [1] was used for obtaining the partially invariant solutions, By means of
this algorithm, the initial system (1.1) is split into a system (1.1)/H, in which only invariants appear, and a
passive system P, which includes invariants and parametric functions. Of the solutions obtained, those are
eliminated which can be obtained as invariant solutions of the same rank § = 1; the problem of finding these
latter is much simpler. In the case in which partially invariant solutions can be obtained as invariant solu-
tions can be obtained as invariant solutions, reduction of the partially invariant to invariant solutions is
tions, reduction of the partially invariant to invariant solutions is said to take place. For first-order sys-
tems, sufficient conditions for reduction are given by the following theorem, from Ovsyannikov.

Theorem. If expressions for all the first-order derivatives of the parametric functions can be ob-
tained from the passive system, then there exists, for every partially invariantH-solution, a subgroup
H'C H such that this solution is an invariant H'~solution of the same rank,

2. The only solutions of interest are those in which the pressure is not identically constant, since
the general solution of system (1.1) can be found when p = const, The following results may be obtained
for the simple-wave type solutions:

2.1. As in the case of simple waves, only isentropic partially invariant solutions exist, not reducible
to invariant solutions., A similar property was proved by Ovsyannikov for double waves [3];

2.2. LetI” (=1, ..., 4) denote the complete set of invariants of a three-parameter subgroup and
let h be the rank of the Jacobian of the functions I’ with respect to the variables u, v, p, and p. Since the
pressure p and density p are invariants of the group admitted by system (1.1) with f (p, S) arbitrary, it
is obvious that h can only take the values 3 and 4. The following result holds for all partially invariant
solutions of rank 8 = 1 and invariance defect 6 = 1, apart from simple waves: if h = 4, then irreducible
partially invariant solutions can only exist for special equations of state; and on the confrary, if h = 3, irre-
ducible solutions of the simple-wave type exist for any function f(p). :

3. Our results are summarized below. The following notation is employed: a, b, ¢g, @, uy, V4, Py, Py
are arbitrary constants, and ® is an arbitrary function. The numbers of the solutions are the same as the
subgroup numbers in the table.

3.1. Solution 1 consists of simple waves. If has been investigated in detail and need not be considered
here.

3.2, There are no irreducible solutions of the simple wave type in subgroups 5, 6, 10, 13, 16 (& = 0),
19, and 20.

Notice that the following three subclasses can be isolated in the class of irreducible simple wave type
solutions:

a) solutions in which the equation of state p = f(p) is arbitrary, uf(t, x, y) is linear in the variable x,
and v and p are in general functions of the variables t and y;

b) solutions in which the equation of state is arbitrary, but u (t,%, y) is 2 nonlinear vector function in
all the independent variables;

¢) solutions with a special equation of state; solutions of subclass a) exist in subgroups 2, 9, 11, and
12, and are as follows.

3.3, Solution 2, Let

a

TR 1 R (TR P
e b

Then this solution is such that the p = p(y) is implicitly defined by
¥ = o (p)

while the functions u(t, X, y) and v(y) are given in terms of the known function p (y) by

v =@ (p), L!=p€p[d)(t_00m(p)).__::]
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3.4. Solution 9:

3.5, Solution 11:
v=oalnt+ oz, p=pfs), z=y/t—alnt

The functions p(z) and w(z) are found from the system of ordinary equations

w’(m—z—a)—l—%%——f—azo
s e TN 2

The function u(t, X, y) is restored by a quadrature with respect to the known functions p(z) and w(z):

u:——z:—[w'+%;(w—z—a)J+p exp(S%)@(lnt——S(ﬁ%)
3.6. Solution 12:

p=pla) v=t+0()

=2 —1, e=(s—o()—2)"% 6(9)225%
is a known function, while p (z) satisfies the equation
2a—a—ap[{£) - (%) [+ @—s—a [S @ + 0o +507)| =w + 1
o =do/dp, o' == &% [ dp?

The function u(t, x, y) is restored by a quadrature via p (z) and w(z):

u=—21<m’+—pp; m)+pw®(t—-—21—sﬁ>

[a]

The subclass b) consists of a single solution, obtained in subgroup 15, in which, in view of the irre-
ducibility condition, we have to put @ = 0. This solution will be quoted below.

3.7, Solution 15:

1 z a y e
=T u= -+ jcosd, wv=- -4 7 sind
The function 0 is given implicitly by
QR0 —7=20
2 2
ar—=L j;‘l +27rcos(9—<p)(%+b>+2b%+b2
rsin (0 — y
T=arctg bl+a+r(cos(g))—cp) ) re=at 4y, Q=arctg

Solutions of subclass c) exist in subgroups 3, 4, 7, 8, 14, 17, and 18, and are as follows.

3.8. Solution 3:

e b8
P=PotGr— u=up+y, v=b—y

The function p (t,x, y) is obtained implicitly from

P)=o(t v—s

a— by

abl<
B ol

a) QU y) =y Fuo Dy —bt)  (BF0)
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b) @t yy=1¢(y-+ u)+ O (=0
3.9. Solution 4:

a? a? [
p=petpr— u=olny -+ up, v=b—?

The function p (t,x, y) is given implicitly by

a a—b\
Lo (2 gy — 2
2
2) ot ) =gpinty + S2May + By—bt) (b£0)
at
b} Ply)=elny+u)+ Oy (6=0)

3.10. Solution 7:

) 0 co
p:—-—2—exp<. ?/\ q:bexp<—?>, 6=t+a

The function p (r, ¢, t) is given implicitly by

o, y—1=0
2=E24-n2, yzarctg%, E=rcos{i+a—@)
r]_rsm(t+a—q))—bexp( cp)( +1)

r2=2x? 4 y?, cp:arotg'*, @ =u?+ 6=arctgl
z u

3.11. Solution 8:

3.12. Solution 14a:

b2 1]
p=o—1 | 5y + ?J
UoP

uzy— +1n prony PN A

o[;r

The function p (t,x, y) is given implicitly by

12 ts at?
Qlz— 5 —at, zl—z2t+7+7—(lnuu+1)t)=0

b b b
zx—x+aln< +ap>_?’ zsz—ln< ia‘))—-b_?_pap

Solution 14b:

1 bp

pP=to— a(lFag) ° U=y — 5 2 +m'1+ap v=1

The function p (t,X, y) is obtained from the relationship
4 1
1n1+ap+1+ap_1:q)(x’ H—y
where ¢(x,1t) is also given in implicit form:

O —Y2, o —tg+ Y2 —In b+ 4)8)=0
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3.13. Solution 17a:
u==z/t+aVp, v=ylt, p=1Ylp®+5b
The function p(t, x) is given implicitly:
OtV zlt+3aVp) =0
Solution 17b:
u=z/t, ov=ylt+aVp, p = Yea?p? + b
The function p (y, t) is given implicitly by
OVp, y/t+aVp) =0
3,14, Solution 18, An irreducible solution only exists when o =0:
p = Yza2p% 4 b, w=1z/t+ ap, = v
The function p (x,t) is given implicitly by
@ (tp, =/ t + 2ap) = 0

4. Examination of the simple-wave type solutions showed that solutions 9 and 15 can be generalized
if the pressure and density in system (1.1) are assumed to depend on time only. On putting p = p(t) and
p =p(t) in system (1.1) and discounting the nonisentropic case (in which the pressure and density are con-
stant), the following system of equations is obtained:

up -ty vy =0, vt uvy 4 voy =0, p (&) + vy + vy =0 (4,1)

Here the notation u (t) =p'/p has been used for typographical simplicity. Notice that, on taking
p = p(t) and p =p(t), the partially invariant solution of rank 8 = 1 and invariance defect 6 = 2 will be dis-
covered from the subgroup H = (X,, X;, X,, X;) . Since the invariance defect 6 =2 here, this solution should
differ from those of the simple-wave type in containing two arbitrary functions.

Let us examine system (4.1). The first two equations of the system can be integrated in the form
z — tu = (4, v), y—tv = (u, v) (4.2)

Here ¢ and ¢ are arbitrary functions. To solve the third equation, the independent variables are
changed: (x,y,t) — (u,v,t). It is easily shown that, when p(t) =—(t + a)=L, the functions u and v are func-
tionally dependent. To prove this, we differentiate the first and second equations of system (4.1) with
respect to x and y, respectively, add the results, and then use the third equation of the system. The case
pty=—(t+ a)Torp =(a+bt)~t(p'/p =p) must therefore be regarded as singular, in the sense of the
mapping (x, y, t)—(u,v,t). On transforming to the variables u, v, and t, and recalling (4.2), the last equa-
tion of (4.1) can be written as

2t 49, 4 v, (4.3)
)= — °
M= = g a0, T (0, T 0, T 2
It is easily shown that, by virtue of (4.3), p(t) must satisfy the equation
poe-3up” opt =0 (A (1) = exp [— [pdz])
This equation can be integrated (the substitution is shown in parentheses), and its solution is

b+ 2¢4t (4.4)

W T T

Since p(t) =p'/p , we get the following expression for p(t):

1

=a—|—bt—‘[—00l2 (co=0)

P

Substituting (4.4) for u(t) into (4.3) and equating coefficients of like powers of t, we obtain the system
of equations

Py + ¥, = b/ co PPy — PpPy = ale (4.5)
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In short, with the assumption that p = p(t) and p = p(t), we find that

_ 1
Ny TR (4.6)

and when ¢, # 0 the solution of system (4.1) must be
s tu=q (4 0), y— =1 (o)
where the functions ¢ and ¥ satisfy system (4.5).

Comparing expression (4.6) for p(t) with the analogous expressions in solutions 9 and 15, it can be
seen that the generalization of solution 9 will be obtained with ¢; = 0 in (4.6). Solution 15 can be generalized
by putting ¢ = 0 in (4.6), Notice that it is in precisely these cases that complete integration of system (4.1)
is possible, If p=(a + bt)~! and, in view of the functional dependence of u and v, we put v = F(u), integration
of system (4.1) gives the solution

1

u=ult, z y), p:m (4 7)
F(u) = PZZ%Z’F{T&FL @ (b — u (bt 4 a))

Here, ®(z) and v = F(u) are arbitrary functions. If we put a = 0 (the case of solution 15), it follows
from the second of Eq. (4,5) that ¢ and ¢ are also functionally dependent. Putting ¥ = F(¢) and integrating
system (4.5), the following solution is obtained:

1
P N Te® (4.8)
b

Fo)=y—tv=—_v-+ O (bu— cof)
4]

z—lu =9 (u,v),

The functions ¢ = F(¢) and ®(z) are arbitrary. In solutions (4.7) and (4.8) we have an arbitrary isen-
tropic equation of state. It was verified that no generalization is obtained for simple-wave type solutions of
subclass a) {similar to the generalizations (4.7) and (4.8)] if we put

u:‘l(tvy)x_i_b(t, )s 7]=v(t,y)
e=p(y, p=71(/)

in system (L.1).

In conclusion, it seems worth pointing out the importance of an investigation of the simple-wave type
solutions in the context of concrete gasdynamic problems.

The author thanks L., V., Ovsyannikov for his interest and valuable advice.
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